A Journey in Other Worlds Page 6
"That's an idea!" said Bearwarden. "Our orbit could be enough like that of a comet to cross the orbits of both Venus and Mars; and the climatic extremes would not be inconvenient. The whole earth being simultaneously warmed or cooled, there would be no equinoctials or storms resulting from changes on one part of the surface from intense heat to intense cold; every part would have a twelve-hour day and night, and none would be turned towards or from the sun for six months at a time; for, however eccentric the orbit, we should keep the axis absolutely straight. At perihelion there would simply be increased evaporation and clouds near the equator, which would shield those regions from the sun, only to disappear again as the earth receded.
"The only trouble," said Cortlandt, "is that we should have no fulcrum. Straightening the axis is simple enough, for we have the attraction of the sun with which to work, and we have but to increase it at one end while decreasing it at the other, and change this as the poles change their inclination towards the sun, to bring it about. If a comet with a sufficiently large head would but come along and retard us, or opportunely give us a pull, or if we could increase the attraction of the other planets for us, or decrease it at times, it might be done. If the force, the control of which was discovered too late to help us straighten the axis, could be applied on a sufficiently large scale; if apergy----"
"I have it!" exclaimed Ayrault, jumping up. "Apergy will do it. We can build an airtight projectile, hermetically seal ourselves within, and charge it in such a way that it will be repelled by the magnetism of the earth, and it will be forced from it with equal or greater violence than that with which it is ordinarily attracted. I believe the earth has but the same relation to space that the individual molecule has to any solid, liquid, or gaseous matter we know; and that, just as molecules strive to fly apart on the application of heat, this earth will repel that projectile when electricity, which we are coming to look upon as another form of heat, is properly applied. It must be so, and it is the manifest destiny of the race to improve it. Man is a spirit cursed with a mortal body, which glues him to the earth, and his yearning to rise, which is innate, is, I believe, only a part of his probation and trial."
"Show us how it can be done," shouted his listeners in chorus.
"Apergy is and must be able to do it," Ayrault continued. "Throughout Nature we find a system of compensation. The centripetal force is offset by the centrifugal; and when, according to the fable, the crystal complained of its hard lot in being unable to move, while the eagle could soar through the upper air and see all the glories of the world, the bird replied, 'My life is but for a moment, while you, set in the rock, will live forever, and will see the last sunrise that flashes upon the earth.'
"We know that Christ, while walking on the waves, did not sink, and that he and Elijah were carried up into heaven. What became of their material bodies we cannot tell, but they were certainly superior to the force of gravitation. We have no reason to believe that in miracles any natural law was broken, or even set aside, but simply that some other law, whose workings we do not understand, became operative and modified the law that otherwise would have had things its own way. In apergy we undoubtedly have the counterpart of gravitation, which must exist, or Nature's system of compensation is broken. May we not believe that in Christ's transfiguration on the mount, and in the appearance of Moses and Elias with him--doubtless in the flesh, since otherwise mortal eyes could not have seen them--apergy came into play and upheld them; that otherwise, and if no other modification had intervened, they would have fallen to the ground; and that apergy was, in other words, the working principle of those miracles?"
"May we not also believe," added Cortlandt, "that in the transfiguration Christ's companions took the substance of their material bodies--the oxygen, hydrogen, nitrogen, and carbon--from the air and the moisture it contained; for, though spiritual bodies, be their activity magnetic or any other, could of course pass the absolute cold and void of space without being affected, no mortal body could; and that in the same manner Elijah's body dissolved into air without the usual intervention of decomposition; for we know that, though matter can easily change its form, it can never be destroyed." All assented to this, and Ayrault continued: "If apergy can annul gravitation, I do not see why it should not do more, for to annul it the repulsion of the earth that it produces must be as great as its attraction, unless we suppose gravitation for the time being to be suspended; but whether it is or not, does not affect the result in this case, for, after the apergetic repulsion is brought to the degree at which a body does not fall, any increase in the current's strength will cause it to rise, and in the case of electro-magnets we know that the attraction or repulsion has practically no limit. This will be of great advantage to us," he continued, "for if a projectile could move away from the earth with no more rapid acceleration than that with which it approaches, it would take too long to reach the nearest planet, but the maximum repulsion being at the start by reason of its proximity to the earth--for apergy, being the counterpart of gravitation, is subject to Newton's and Kepler's laws--the acceleration of a body apergetically charged will be greatest at first. Two inclined planes may have the same fall, but a ball will reach the bottom of one that is steepest near the top in less time than on any other, because the maximum acceleration is at the start. We are all tired of being stuck to this cosmical speck, with its monotonous ocean, leaden sky, and single moon that is useless more than half the time, while its size is so microscopic compared with the universe that we can traverse its great circle in four days. Its possibilities are exhausted; and just as Greece became too small for the civilization of the Greeks, and as reproduction is growth beyond the individual, so it seems to me that the future glory of the human race lies in exploring at least the solar system, without waiting to become shades."
"Should you propose to go to Mars or Venus?" asked Cortlandt.
"No," replied Ayrault, "we know all about Mars; it is but one seventh the size of the earth, and as the axis is inclined more than ours, it would be a less comfortable globe than this; while, as our president here told us in his T. A. S. Company's report, the axis of Venus is inclined to such a degree that it would be almost uninhabitable for us. It would be as if colonists tried to settle Greenland, or had come to North America during its Glacial period. Neither Venus nor Mars would be a good place now."
"Where should you propose to go?" asked Stillman.
"To Jupiter, and, if possible, after that to Saturn," replied Ayrault; "the former's mean distance from the sun is 480,000,000 miles; but, as our president showed us, its axis is so nearly straight that I think, with its internal warmth, there will be nothing to fear from cold. Though, on account of the planet's vast size, objects on its surface weigh more than twice as much as here, if I am able to reach it by means of apergy, the same force will enable me to regulate my weight. Will any one go with me?"
"Splendid!" said Bearwarden. "If Mr. Dumby, our vice-president, will temporarily assume my office, nothing will give me greater pleasure."
"So will I go, if there is room for me," said Cortlandt. "I will at once resign my place as Government expert, and consider it the grandest event of my life."
"If I were not afraid of leaving Stillman here to his own devices, I'd ask for a berth as well," said Deepwaters.
"I am afraid," said Stillman, "if you take any more, you will be overcrowded."
"Modesty forbids his saying," said Deepwaters, "that it wouldn't do for the country to have all its eggs in one basket."
"Are you not afraid you will find the surface hot, or even molten?" asked Vice-President Dumby. "With its eighty-six thousand five hundred mile diameter, the amount of original internal heat must have been terrific."
"No, said Cortlandt, "it cannot be molten, or even in the least degree luminous, for, if it were, its satellites would be visible when they enter its shadow, whereas they entirely disappear."
"I do not believe Jupiter's surface is even perceptibly warm," said Bearwarden.
"We know that Algol, known to the ancients as the 'Demon Star,' and several other variable stars, are accompanied by a dark companion, with which they revolve about a common centre, and which periodically obscures part of their light. Now, some of these nonluminaries are nearly as large as our sun, and, of course, many hundred times the size of Jupiter. If these bodies have lost enough heat to be invisible, Jupiter's surface at least must be nearly cold."
"In the phosphorescence of seawater," said Cortlandt, "and in other instances in Nature, we find light without heat, and we may soon be able to produce it in the arts by oxidizing coal without the intervention of the steam engine; but we never find any considerable heat without light."
"I am convinced," said Bearwarden, "that we shall find Jupiter habitable for intelligent beings who have been developed on a more advanced sphere than itself, though I do not believe it has progressed far enough in its evolution to produce them. I expect to find it in its Palaeozoic or Mesozoic period, while over a hundred years ago the English astronomer, Chambers, thought that on Saturn there was good reason for suspecting the presence of snow."
"What sort of spaceship do you propose to have?" asked the vice-president.
"As you have to pass through but little air," said Deepwaters, "I should suggest a shortstroke cylinder of large diameter, with a flat base and dome roof, composed of aluminum, or, still better, of glucinum or beryllium as it is sometimes called, which is twice as good a conductor of electricity as aluminum, four times as strong, and is the lightest of all known metals, having a specific gravity of only two, which last property will be of great use to you, for of course the more weight you have to propel the more apergetic repulsion you will have to develop."
"I will get some drawing-paper I left outside in my trap," said Ayrault, "when with your ideas we may arrive at something definite," saying which, he left the room.
"He seems very cynical in his ideas of life and the world in general," said Secretary Stillman, "for a man of his age, and one that is engaged."
"You see," replied Bearwarden, "his fiancee is not yet a senior, being in the class of two thousand and one at Vassar, and so cannot marry him for a year. Not till next June can this sweet girl graduate come forth with her mortar-board and sheepskin to enlighten the world and make him happy. That is, I suspect, one reason why he proposed this trip." Hard At Work
In a few moments Ayrault returned with pencils, a pair of compasses, and paper.
"Let us see, in the first place," said Deepwaters, "how long the journey will take. Since a stone falls 16.09 feet the first second, and 64+ feet the next, it is easy to calculate at what rate your speed would increase with the repulsion twice that of the ordinary traction. But I think this would be too slow. It will be best to treble or quadruple the apergetic charge, which can easily be done, in which case your speed will exceed the muzzle-velocity of a projectile from a long-range gun, in a few seconds. As the earth's repulsion decreases, the attraction of mars and Jupiter will increase, and, there being no resistance, your gait will become more and more rapid till it is necessary to reverse the charge to avoid being dashed to pieces or being consumed like a falling star by the friction in passing through Jupiter's atmosphere. You can be on the safe side by checking your speed in advance. You must, of course, be careful to avoid collisions with meteors and asteroids but if you do, they will be of use to you, for by attracting or repelling them you can change your course to suit yourself, and also theirs in inverse ratio to their masses. Jupiter's moons will be like head and stern lines in enabling you to choose the part of the surface on which you wish to land. With apergy it is as essential to have some heavy body on which to work, within range, as to have water about a ship's propellers. Whether, when apergy is developed, gravitation is temporarily annulled, or reversed like the late attraction of a magnet when the current is changed, or whether it is merely overpowered, in which case your motion will be the resultant of the two, is an unsettled and not very important point; for, though we know but little more of the nature of electricity than was known a hundred years ago, this does not prevent our producing and using it."
"Jupiter, when in opposition," he continued, "is about 380,000,000 miles from us, and it takes light, which travels at the rate of 190,000 miles a second, just thirty-four minutes to reach the earth from Jupiter. If we suppose the average speed of your ship to be one-fivehundredth as great, it will take you just eleven days, nineteen hours and twenty minutes to make the journey. You will have a fine view of Mars and the asteroids, and when 1,169,000 miles from Jupiter, will cross the orbit of Callisto, the fifth moon in distance from the giant planet. That will be your best point to steer by."
"I think," said Ayrault, "as that will be the first member of Jupiter's system we pass, and as it will guide us into port, it would be a good name for our ship, and you must christen her if we have her launched."
"No, no," said Deepwaters, "Miss Preston must do that; but we certainly should have a launch, for you might have to land in the water, and you must be sure the ship is tight."
"Talking of tight ships," said Bearwarden, passing a decanter of claret to Stillman, "may remind us that it is time to splice the 'main brace.' There's a bottle of whisky and some water just behind you," he added to Deepwaters, "while three minutes after I ring this bell," he said, pressing a button and jerking a handle marked '8,' "the champagne cocktails will be on the desk."
"I see you know his ways," said Stillman to Bearwarden, drooping his eyes in Deepwaters's direction.
"Oh, yes, I've been here before," replied Deepwaters. "You see, we navy men have to hustle now-a-days, and can't pass our time in a high-backed chair, talking platitudes." At this moment there was a slight rumbling, and eight champagne cocktails, with the froth still on, and straws on a separate plate, shot in and landed on a corner of the desk.
"Help yourselves, gentlemen," said Bearwarden, placing them on a table; "I hope we shall find them cold."
"Do you know," said Deepwaters to Ayrault, while rapidly making his cocktail disappear,
"the Callisto's cost with its outfit will be very great, especially if you use glucinum, which, though the ideal metal for the purpose, comes pretty high? I suggest that you apply to Congress for an appropriation. This experiment comes under the 'Promotion of Science Act,' and any bill for it would certainly pass."
"No, indeed," replied Ayrault; "the Callisto trip will be a privilege and glory I would not miss, and building her will be a part of it. I shall put in everything conducive to success, but will come to the Government only for advice."
"I will send a letter to all our ambassadors and consuls," said Stillman, "to telegraph the department anything they may know or learn that will be of use in adjusting the batteries, controlling the machine, or anything else, and will turn over to you in a succinct form all information that may be relevant, for without such sorting you would be overwhelmed."
"And I," said Deepwaters, "will order the commanders of our vessels to give you a farewell salute at starting, and to pick you up in case you fail. When you have demonstrated the suitability of apergy," he continued, "and the habitability of Jupiter and Saturn--,which, with their five and eight moons, respectively, and rings thrown in, must both be vastly superior to our little second-rate globe--we will see what can be done towards changing our orbit, and if we cannot swing a little nearer to our new world or worlds. Then we'll lower, or rather raise, the boats in the shape of numerous Callistos, and have a landing-party ready at each opposition, while a man or two can be placed in charge of each projectile to bring it back in ballast. Thus we may soon have regular interplanetary lines."
"As every place seems to have been settled from some other," said Cortlandt, "I do not see why, with increased scientific facilities, history should not repeat itself, and this be the point from which to colonize the solar system; for, for the present at least, it would seem that we could not get beyond that."
"As it will be quite an undertaking to change the orbit, said Deepwa
ters, "we shall have time meanwhile to absorb or run out all inferior races, so that we shall not make the mistake of extending the Tower of Babel."
"He is putting on his war-paint," said Stillman, "and will soon want a planet to himself."
"I see no necessity for even changing the orbit," said Bearwarden, "except for the benefit of those that remain. If this attempt succeeds, it can doubtless be repeated. An increase in eccentricity would merely shorten the journey, if aphelion always coincided with opposition, which it would not."
"Let us know how you are getting on," said Deepwaters to Ayrault, "and be sure you have the Callisto properly christened. Step lively there, landlubbers!" he called to Stillman; "I have an appointment at Washington at one, and it is now twenty minutes past twelve. We can lunch on the way."
Ayrault immediately advertised for bids for the construction of a glucinum cylinder twenty-five feet in diameter, fifteen feet high at the sides, with a domed roof, bringing up the total height to twenty-one feet, and with a small gutter about it to catch the rain on Jupiter or any other planet they might visit. The sides, roof, and floor were to consist of two sheets, each one third of an inch thick and six inches apart, the space between to be filled with mineral wool, as a protection against the intense cold of space. There were also to be several keels and supports underneath, on which the car should rest. Large, toughened plate-glass windows were to be let into the roof and sides, and smaller ones in the floor, all to be furnished with thick shades and curtains. Ayrault also decided to have it divided into two stories, with ceilings six and a half to seven and a half feet high, respectively, with a sort of crow's nest or observatory at the top; the floors to be lattice-work, like those in the engine-room of a steamer, so that when the carpets were rolled up they should not greatly obstruct the view. The wide, flat base and the low centre of gravity would, he saw, be of use in withstanding the high winds that he knew often prevailed on Jupiter.